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ON THE VALIDATION OF A CODE AND A TURBULENCE MODEL APPROPRIATE TO CIRCULATION CONTROL AIRFOILS 

by 

J. R. Viegas and M. W. Rubesin 
NASA Ames Research Center. Mof fe t t  Field,  Ca l i fo rn ia .  USA 

and 

R. W. MacConnack 
Stanford Universi ty,  Stanford, Ca l i fo rn ia ,  USA 

ABSTRACT 

A computer code f o r  ca l cu la t i ng  f low about a c i r c u l a t i o n  cont ro l  a i r f o i l  w i t h i n  a wind tunnel t e s t  

The i n i t i a l  stages o f  the process have 
scc t ion  has been developed. This code i s  being val idated f o r  eventual use as an a i d  t o  design such a i r -  
f o i l s .  
been accomplished. The present code has been appl ied t o  a low-subsonic. two-dimensional f low about a 
c i r c u l a t i o n  cont ro l  a i r f o i l  f o r  which extensive data ex is t .  Two basic turbulence models and var ian ts  
thereof have been successfully introduced i n t o  the algorithm, the Baldwin-Lomax algebraic and the Jones- 
Launder two-equation models of turbulence. The var iants include adding a h i s to ry  o f  the j e t  development 
f o r  the  algebraic model and adding streanmise curvature e f fec ts  f o r  both models. Numerical d i f f i c u l t i e s  
and d i f f i c u l t i e s  i n  the va l i da t i on  Process are discussed. Turbulence model and code improvements t o  pro- 
ceed w i t h  the va l i da t i on  process are a lso  discussed. 

The concept o f  code va l i da t i on  being used i s  explained. 

INTRODUCTION 

Code Va l ida t ion  Process 

The requirement o f  va l i da t i ng  codes f o r  computational f l u i d  dynamics (CFO) has taken on increased 
emphasi; i s  recent times. The primary reason fo r  t h i s  i s  t ha t  the f i e l d  of CFO has matured t o  the  po in t  
t ha t  now i t  can be considered one o f  the major t oo l s  ava i lab le  t o  the a i r c r a f t  designer. namely, an addi- 
t i o n  and complement t o  experimental data from wind tunnel and f l i g h t  tests.  However. i n  order f o r  codes 
t o  be used w i t h  confidence, designers must know the accuracies and l i m i t a t i o n s  o f  such a code. The pro- 
cess o f  es tab l i sh ing  these code cha rac te r i s t i cs  has come t o  be known as code va l ida t ion .  

To the authors, the va l i da t i on  process means developing a computer code whose r e s u l t s  agree w i t h  the 
p r inc ipa l  aerodynamic data from one o r  more experiments. These data are the  usual fo rce  and moment coef- 
f i c i e n t s  and v i sua l i za t i ons  o f  the f low f i e lds .  
w i th  known accuracies and unambiguously def ined boundary condi t ions surrounding the t e s t  section, includ- 
ing  information on the turbulence i n t e n s i t y  and scale a t  the upstream s ta t ion .  
a lso cover a range o f  variables, such as conf igurat ions,  Reynolds numbers, Mach number, j e t  momentum coef- 
f i c i en ts ,  etc., t h a t  envelop those o f  the proposed appl icat ion.  

Advances i n  the development o f  supercomputers and computational codes have permit ted computations, a t  
reasonable costs, o f  f low f i e l d  conf igurat ions having a complexity approaching t h a t  o f  complete a i r c r a f t ,  
when the computations are r e s t r i c t e d  t o  i n v i s c i d  flow. For more r e a l i s t i c  physical  modeling. configura- 
t i ons  such as wing-body combinations can be solved. These advances r e f l e c t  the considerable improvements 
tha t  have occurred i n  techniques f o r  the generation of C ~ p U t a t i O n a l  meshes and i n  so lu t i on  algorithms i n  
recent years. Currently. there  ar2 no inherent l i m i t a t i o n s  on the numerical accuracy t h a t  can be achieved 
w i th  these CFO codes other than t h e i r  computational expense introduced by add i t iona l  mesh po in ts  and the 
use o f  higher order so lu t i on  techniques. There i s  a p rac t i ca l  l i m i t ,  however, t o  which numerical accuracy 
needs t o  be dr iven  because a l l  the codes contain c e r t a i n  e r ro rs  t h a t  r e s u l t  from the approximate "physics" 
which has been introduced i n t o  them. 
and Reynolds averaged Navier-Stokes codes contain on ly  approximate s t a t i s t i c a l  turbulence models. An 
i n t e l l i g e n t  use o f  computer codes has t o  g i ve  considerat ion t o  the  spec i f i c  accuracy needs of the  designer 
and, concomitantly. requires an assessment o f  the  er ro rs  introduced i n  the  codes by the  approximations t o  
the "physics" contained i n  the codes. Requiring ,numerical accuracies t o  be much more s t r i ngen t  than those 
inherent i n  the physical  aspects of a code i s  economically unwise and not bene f i c ia l  t o  the  designer. 
Thus. the establishment o f  the  magnitude o f  the e r ro rs  introduced by various physical  approximations over 
a range of f low var iables and conf igurat ions i s  c r i t i c a l  t o  the code va l i da t i on  process. 
process also serves t o  uncover lower order l o g i c  e r ro rs  and/or "bugs" tha t  o f ten  creep i n t o  very large and 
complex codes and produce subtle, bu t  s ign i f i can t .  numerical e r ro rs  i n  the resu l ts .  

developed t o  compute the  performance o f  c i r c u l a t i o n  cont ro l  a i r f o i l s ,  where l i f t  i s  augmented by a surface 
j e t  f low ing  tangen t ia l l y  over the a i r f o i l ' s  b lun t  t r a i l i n g  edge. 
a i r f o i l  through the  Coanda ef fect .  From a turbulence modeling viewpoint the f low over a c i r c u l a t i o n  con- 
t r o l  a i r f o i l  i s  exceedingly C0ll)plex. containing such features as surface j e t s  and f ree  shear layers where 
the j e t  and and the  upper boundary layer  merge. Each of these regions experience the complicating e f fec ts  
of both high s t r e a w i s e  curvature and adverse pressure gradients. I n  addi t ion.  boundary-layer separation 
occurs somewhere w i t h i n  the Coanda reg ion  where the  j e t  can no longer move forward against an adverse 
surface pressure gradient. A l l  these ef fects combine t o  introduce large pressure gradients normal t o  the 

It i s  required, however, t ha t  the experiments be those 

The experiments should 

For example, panel methods and Euler codes ignore viscous e f f e c t s  

The va l i da t i on  

I n  t h i s  paper, the  i n i t i a l  stages o f  a va l i da t i on  process are demonstrated w i th  a code tha t  i s  being 

The j e t  adheres t o  the  surface o f  the 
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a i r f o i l  surface and r e c i r c u l a t i o n  regions, both o f  which requ i re  f l o w - f i e l d  solut ions t o  be solved i n  the 
Navier-Stokes mode. 
Reynolds-averaged Navier-Stokes equations about the t ra i l ing-edge region o f  a c i r c u l a t i o n  cont ro l  a i r f o i l  
i n  f ree a i r .  This Lame code i s  then extended t o  apply t o  an e n t i r e  a i r f o i l  w i th in  a wind tunnel t e s t  
sect ion by including the  presence o f  upper and lover wal ls.  
code p a r t i c u l a r l y  su i tab le  f o r  c a l i b r a t i o n  and, u l t imate ly .  ve r i f i ca t i on .  The code v e r i f i c a t i o n  process, 
both i n  i t s  numerical accuracy and i n  i t s  turbulence model, can be performed w i t h  nxrch less  ambiguity 
because the code can dup l ica te  the wa l l  ef fects of wind tunnel experiments. provided the f low remains 
essent ia l l y  two dimensional. A p a r t i c u l a r l y  important experiment such as t h i s  has recent ly  been conducted 
and reported i n  Ref. 1. Parts o f  the data of t h i s  experiment are used i n  t h i s  paper as standards against 
which t o  ca l i b ra te  the performance o f  the code w i t h  a var ie ty  of turbulence models and t o  suggest the 
improvements needed i n  the  best o f  the models. The remaining par ts  o f  the ava i lab le  data, t h a t  i s ,  the 
aerodynamic force data over extensive ranges of j e t  mass flow ra tes  and angles o f  attack, w i l l  be used 
subsequently t o  va l ida te  the code w i th  the most appropriate turbulence model i d e n t i f i e d  i n  t h i s  i n i t i a l  
ca l i b ra t i on  process. 

This paper f i r s t  describes the development o f  a computer code tha t  solves the 

I t  i s  t h i s  l a t t e r  arrangement t h a t  makes t h i s  

Computation Method 

The computational code employed here uses an extension of the Gauss-Seidel re laxa t ion  method proposed 
by MacCormack i n  1985 (Ref. 2). This i s  an i m p l i c i t .  f i n i t e  volume method tha t  uses f l u x  s p l i t t i n g .  
extensions involve the in t roduc t ion  o f  second-order space accuracy fo r  the f l u x - s p l i t t i n g  technique and an 
improved treatment o f  source terms contained i n  advanced turbulence m d e l s  tha t  re in fo rces  the diagonal 
dominance o f  t h e i r  i m p l i c i t  representat ion and accounts ana ly t i ca l l y  f o r  each of the source cont r ibu t ions  
(Ref. 3 ) .  The r e s u l t i n g  code i s  robust, recept ive t o  d i f f e ren t  turbulence models, and can use complex 
mesh arrangements. 
i n t o  the problem, which i s  c r i t i c a l  t o  the concept of code va l i da t i on  because i t  allows, i n  p r inc ip le ,  
accounting f o r  wind tunnel in te r fe rence i n  an unambiguous manner. The code i s  known t o  be e f f i c i e n t  f o r  
f lows a t  t ransonic and supersonic speeds, but i s  somewhat slower a t  the speeds considered here. 
l a t t e r  i s  a disadvantage i n  the cur ren t  work where the improvement of turbulence models requires tes t i ng  
w i th  many repeated runs; however, the u l t imate  goal o f  t h i s  study i s  the design o f  c i r c u l a t i o n  cont ro l  
a i r f o i l s  operat ing i n  t ransonic f low and f o r  t h i s  the code should be e f fec t i ve .  

E a r l i e r  Results 

The 

The accep tab i l i t y  o f  complex meshes allows the in t roduc t ion  o f  the wind tunnel wa l ls  

The 

The e a r l i e s t  app l i ca t ion  o f  t h i s  code (Ref. 4) was t o  the experiment o f  Ref. 5. To save computer 
time, wi thout s a c r i f i c i n g  resolut ion,  the Navier-Stokes computational zone was confined t o  the imnediate 
region o f  the t r a i l i n g  edge. The condi t ions a t  the  boundaries o f  the zone were estimated from a l im i ted  
number o f  ve loc i t y  measurements. educated guesses o f  the j e t  condi t ions corresponding t o  the measured mass 
f l o w  rate, and estimates o f  t o t a l  pressures. t o t a l  temperatures, and f low angles along incoming boundaries 
and s t a t i c  pressures a t  out f low boundaries. Subsequently, an ana ly t i ca l  po ten t i a l  f low so lu t i on  f o r  an 
e l l i p t i c  cross sec t ion  a i r f o i l  was used t o  provide the  f low angles a t  the in f low boundaries and s t a t i c  
pressures a t  the  ou t f low boundaries. 
the so lu t i on  i n  which the  Navier-Stokes zone was imneshed. This surrounding so lu t ion  w i l l  be ca l l ed  the 
"ambient" so lu t i on  i n  the descr ipt ions t h a t  fo l low. 
and var ian ts  required t o  account f o r  the j e t  boundary-layer mixing and curvature were used i n  these 
calculat ions.  These var ian ts  w i l l  be described l a t e r  i n  the  sect ion o f  t h i s  paper e n t i t l e d  Turbulence 
Modeling. I t  was found t h a t  the computed r e s u l t s  were very sens i t i ve  t o  the p a r t i c u l a r  turbulence model 
employed and t o  small changes i n  the estimates o f  the boundary conditions. 

edge o f  a c i r c u l a t i o n  cont ro l  a i r f o i l ,  comparisons were next made w i th  the wind tunnel data o f  Ref. 8. The 
ambient so lu t i on  used i n  t h i s  case was provided by the Navier-Stokes computations o f  Ref. 9. 
boundary o f  these computations extended away from the a i r f o i l  t o  distances we l l  beyond the wind tunnel 
walls, and the e f f e c t  o f  the tunnel wa l ls  were a c c m d a t e d  by using corrected angles o f  at tack as recom- 
mended by the experimentalists. 
Baldwin-Lomax model. but w i t h  modif icat ions t o  account f o r  the intense streamwise curvature i n  the 
t ra i l ing-edge region o f  the  a i r f o i l s .  A coe f f i c i en t  i n  the  curvature cor rec t ion  term was a l te red  f o r  each 
stream ve loc i t y  and t ra l l ing-edge conf igura t ion  t o  achieve agreement i n  l i f t  and surface pressure coef f i -  
c ien ts  w i t h  the experimental data (Ref. 8 ) .  Thus, the method o f  Ref. 9 could not be considered pred ic t i ve  
i n  t h a t  the "ca l i b ra t i on  constant" var ied from case t o  case. It was these inadequacies tha t  added an 
impetus t o  the current work. 

To compute the d e t a i l s  o f  the f low i n  the t ra i l ing-edge region o f  the a i r f o i l  tested i n  Ref. 8, the 
loca l  NS zone was imbedded i n  the ambient so lu t ion  suppl ied by the complete Navier-Stokes so lu t i on  
(Ref. 9) as i s  shown i n  Fig. 1. The complete Navier-Stokes computation o f  Ref. 9 was used t o  def ine the 
boundary condi t ions on the l oca l  zone as described previously. On the upstream boundaries these involve 
the t o t a l  pressure, t o t a l  temperature, and f low angles (a lso  the turbulence k i n e t i c  energy and d iss ipa t ion  
ra te  i f  needed by the turbulence model) i n  the stream and i n  the j e t .  The downstream boundary condi t ions 
are determined from the s t a t i c  pressure d i s t r i b u t i o n  o f  the ambient so lu t ion  along the  c i r c u l a r  bound- 
ary. With these boundary condi t ions there i s  no assurance t h a t  the stream angles on the outf low boundary 
o f  the l oca l  NS zone would agree w i t h  those o f  the ambient so lu t i on  a t  the same loca t i on  unless the two 
so lu t ion  techniques are compatible. To permit  focusing on numerical compat ib i l i t y .  an i den t i ca l  turbulence 
model, Baldwin-Lomax p lus  curvature correct ion.  was employed i n  the loca l  zone as was used i n  the c a l i -  
brated ambient solut ion.  

These boundary condi t ions and the po ten t i a l  f low so lu t i on  provided 

Only algebralc models o f  turbulence (Refs. 6 and 7) 

To ob ta in  a f i rmer  understanding o f  the use o f  a l oca l  Navier-Stokes zone (NS zone) a t  the t r a i l i n g  

The outer 

The turbulence model employed i n  the ca lcu la t ions  o f  Ref. 9 was the 

The tes t  of the compa t ib i l i t y  between the two solut ions was t o  adjust  the mass 
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f low ra te  of the j e t  enter ing the loca l  NS zone u n t i l  the stream angles w i th in  the zone a t  the e x i t  bound- 
ary agreed w i t h  those o f  the ambient solut ion.  Note tha t  the mass f low and momentum f low ra tes  i n  the j e t  
are small compared t o  those o f  the i n l e t  or e x i t  boundary, so tha t  changes i n  the j e t  condi t ions from 
those consistent w i t h  the experiment or the ambient Calculat ion o f  Ref. 9 should not introduce serious 
mismatches i n  the condi t ions a t  the e x i t  boundary. 
g e m e t r i c  angle o f  attack, a c i r c u l a r  t r a i l i n g  edge, and 
reduct ion of about 10% from the actual  j e t  mass f low r a t e  enter ing the loca l  Computation zone i n  the 
ambient so lu t ion  y ie lded the agreement i n  out- f lowing streamlines shown i n  Fig.  2. Here the c lose ly  
spaced streamlines are from the loca l  zone ca l cu la t i on  and the sparse streamlines from the base ambient 
solut iot l .  
of Ref. 9,  resu l ted  i n  uncer ta in t ies  o f  about 10% i n  j e t  mass f l o w  r a t e  required t o  produce a given l i f t .  

For the tes t  case o f  Mach number equal t o  0.3. zero 
c,, = 0.0322 o f  Ref. 8, i t  was found tha t  a 

Thus, the matching procedure, as Well as innate di f ferences between the current code and tha t  

Figure 3 shows a comparison o f  the experimental pressure coe f f i c i en ts  i n  the Coanda region w i th  the 
corresponding computed values from the ambient so lu t i on  code and the imneshed loca l  Navier-Stokes code 
w i th  the same turbulence model as was used i n  the ambient so lu t i on  code and w i th  two add i t iona l  models. 
The experimental data from Ref. 8 are designated w i t h  open c i r c les ,  whereas the computed r e s u l t s  are shown 
as s o l i d  l i nes .  
turbulence model (Ref. 7 )  i s  modif ied by the ca l ib ra ted  streamwise curvature correct ion.  The agreement i n  
the pressure coe f f i c i en ts  i s  qu i te  good, when considerat ion i s  given t o  the comparatively large spacing 
between the pressure taps. 
imbedded code ca lcu la t ion ,  using the same turbulence model as i n  the ambient ca lcu la t ion ,  but w i th  10% 
less mass f low i n  the j e t .  
ambient so lu t i on  shown i n  Fig. 3(a). 
recomnended i n  Ref. 9. 
brated curvature co r rec t i on  was removed from the imbedded flow calculat ion.  but w i th  the adjusted mass 
f low r a t e  o f  the j e t  s t i l l  retained. 
puted values. 
vature correct ion,  but w i t h  the experimental mass f low rate.  
w i th  the "ca l ib ra ted"  reduced mass f low (Fig. 3(b)). 

Current Approach 

The work j u s t  described served t o  g ive  credence t o  the cur ren t  numerical method and suggested cont in-  
u ing i t s  use i n  developing a turbulence model t h a t  d i d  not requ i re  a l t e ra t i ons  fo r  each t e s t  cond i t ion  f o r  
the c i r c u l a t i o n  cont ro l  a i r f o i l .  To develop such a turbulence model requires guidance from care fu l  and 
ra ther  complete experiments. t h a t  include measurements o f  the f low f i e l d  as w e l l  as surface pressure 
and/or ove ra l l  forces. Fortunately, an experiment such as t h i s  ex i s t s  (Ref. 1) although i t  i s  r e s t r i c t e d  
t o  f a i r l y  low free-stream speeds. The experimenters d i d  not, however, measure p r o f i l e s  o f  the loca l  f low 
condi t ions a t  the entrance t o  the  wind tunnel t e s t  section. and t h i s  omission i s  a cause o f  concern as 
w i l l  be explained l a t e r  i n  t h i s  paper. The wind tunnel model i n  t h i s  experiment was la rge  enough t o  al low 
some reso lu t i on  o f  f low f i e l d  quant i t ies  necessary t o  def ine the condi t ions o f  the e x i t i n g  j e t  and t o  a id  
i n  assessing the performance o f  the  turbulence model. The la rge  s ize  o f  the model, however, introduced 
wind-tunnel-wall interference; the tunnel wa l ls  were on ly  a few chords away from the wind tunnel model. 
The experimenters were conscious o f  the p o s s i b i l i t y  of wind tunnel in te r fe rence and took care t o  def ine 
the s t a t i c  pressures along the upper and lower wa l ls  of the wind tunnel. Thus. t o  be able t o  use these 
data t o  ca l i b ra te  codes, guide turbulence modeling and, subsequently, v e r i f y  the code-model combination, 
i t  i s  necessary t o  e l im ina te  the  uncer ta in t ies  introduced by the  wind tunnel wa l ls  by inc lud ing  t h e i r  
presence i n t o  the calculat ion.  
a lso could not accept higher order models easi ly,  i t  was decided t o  expand the code developed here from 
one of a l oca l  zone t o  a complete one tha t  encompasses the  e n t i r e  a i r f o i l  and the wind tunnel walls. 

Figure 3(a) shows t h i s  cornparison with the  computed r e s u l t s  o f  Ref. 9. when the basic 

Figure 3(b) shows a comparison o f  the data w i th  the computed resu l t s  o f  

The agreement w i th  the experimental data i s  almost i den t i ca l  w i t h  tha t  o f  the 
Figure 3 a lso  shows the e f f e c t  o f  the turbulence model c a l i b r a t i o n  

This can be seen i n  the comparison between Figs. 3(b) and 3(c). where the c a l i -  

Renoving the curvature cor rec t ion  degrades the accuracy o f  the com- 
F ina l l y ,  Fig. 3(d) shows computations w i t h  a two-equation model (Ref. 10) wi thout any cur -  

These r e s u l t s  are also poorer than the case 

Since the sp i ra l  mesh i n  the code o f  Ref. 9 could not do t h i s  read i l y .  and 

CODE DEVELOPHEN1 

Computation Gr id  

The g r i d  selected f o r  computing the f l ow  of Ref. 1 i s  shown i n  Fig. 4. This g r i d  Is general ly an 
0-mesh contoured t o  f i t  between the  tunnel wa l ls  and the  a i r f o i l  and extends upstream and downstream t o  
the l i m i t s  o f  the wa l l  surface pressure measurements. The g r i d  shown contains 126 nodal po in ts  i n  the 
c i rcumferent ia l  d i r e c t i o n  and 80 i n  the  " rad ia l "  d i rec t ion .  This g r l d  can be r e a d i l y  a l te red  l o c a l l y  i f  
more reso lu t i on  i s  needed. A unique feature of t h i s  g r i d  appl ied t o  the c i r c u l a t i o n  cont ro l  a i r f o i l  i s  
t ha t  mesh g r i d  l i n e s  t h a t  emerge from the  j e t  and and I t s  l i p  are allowed t o  pass forward under the a i r -  
f o i l  and then col lapse t o  a s ingular po in t  a t  t he  a i r f o l l  leading edge. De ta i l s  o f  t h i s  mesh i n  the 
v i c i n i t y  o f  the  j e t  and over the e n t i r e  t r a i l i n g  edge. or Coanda region, are shown i n  Figs. 5 and 6. The 
mesh stretches and shr inks i n  the outward d i r e c t i o n  frm the body, guided by the need t o  de f ine  the j e t  
region adequately. I n  the j e t ,  the  mesh stretches away from both wa l ls  symnetrically. I n  the mesh shown. 
32 po in ts  are used t o  resolve the  j e t  and the  j e t  l i p .  
inwardly from the l i p  surfaces. but i s  present ly f a i r l y  coarse, containing 12 po in ts  i n  the mesh shown. It 
proved t o  be adequate t o  assure mesh independent solutions. The mesh contains 48 po in ts  stretched from 
the top surface o f  the  j e t  l i p  t o  the tunnel wa l l  above the je t .  Throughout the remainder o f  the  cont ro l  
volume, the mesh s t re tch ing  described above f o r  the plane o f  the  j e t  e x i t  i s  made propor t iona l  t o  the  
distance from the  body t o  the outside boundaries. Addi t ional  t e s t  computations were performed w i t h  the  
mesh dimensioned numbers diminished by a f a c t o r  o f  0.7 I n  both the d i r e c t i o n  between the a i r f o i l  and the 

The mesh behind the Jet l i p  i s  a lso  stretched, 
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wal ls  and i n  the c i rcumferent ia l  d l rec t ion .  
ent. 

It was found tha t  the resu l t s  were i n s i g n i f i c a n t l y  d i f f e r -  
It i s  believed, therefore, t h a t  the r e s u l t s  shown i n  t h i s  paper are essent ia l l y  mesh independent. 

Boundary Conditions 

AS previously mentioned, i t  had been found i n  the e a r l i e r  study, Ref. 4, t ha t  the cmputa t iona l  
resu l t s  fo r  f l o w  about the t r a i l i n g  edge of a c i r c u l a t i o n  Control a i r f o i l  were very sens i t i ve  t o  the 
boundary condi t ions employed. 
f u l l  a i r f o i l ,  espec ia l l y  when the e f f e c t s  of the tunnel wa l ls  are included i n  the calculat ions.  The f low 
of Ref. 1 was chosen f o r  t h i s  study because i t  presented the most de ta i led  data ava i lab le  f o r  c i r c u l a t i o n  
cont ro l  a i r f o i l  code Val ida t ion .  However, even t h i s  We1 1 documented experiment contains regions along the 
boundaries where more complete data would be desired. 
sent the boundary condi t ions as accurately as possible and w i t h  reasonable approximations o f ten  subs t i t u t -  
ing  f o r  missing information. 

I t i s  f e l t  t ha t  t h i s  Same Sens i t i v i t y  p reva i l s  i n  ca lcu la t ions  over the 

I n  the present study. care i s  exercised t o  repre- 

No-slip and adiabat ic boundary condi t ions are used on the surface o f  the a i r f o i l .  S l i p  f low and 
adiabat ic boundary condi t ions are used on the wind tunnel walls. 
the method o f  charac ter is t i cs  are used a t  a l l  in f low and outf low boundaries. 
the cont ro l  volume, x/c = -2. the t o t a l  pressure, t o t a l  temperature, and the flow angle are speci f ied.  
a complex subsonic f low such as t h i s  the inf luence o f  the c i r c u l a t i o n  can extend f a r  upstream and down- 
stream o f  the a i r f o i l .  There i s  evidence i n  the data o f  Ref. 1 tha t  t h i s  might also be t rue  f o r  t h i s  
case. Under such conditions, a d i s t r i b u t i o n  o f  t o t a l  pressure, t o t a l  temperature, and f low angle would 
need t o  be spec i f ied  everywhere along the upstream boundary t o  accurately represent the f low enter ing 
cont ro l  volume. For the tu rbu len t  f i e l d  equations, d i s t r i bu t i ons  of  the k i n e t i c  energy and the energy 
d i ss ipa t i on  r a t e  a lso  need t o  be speci f ied.  The l a t t e r  quant i t y  i s  extremely d i f f i c u l t  t o  measure, how- 
ever, p r o f i l e s  o f  the more eas i l y  measured quan t i t i es  were a lso  not provided i n  Ref. l a t  t h i s  i n f l ow  
boundary. Thus f o r  the present computations the t o t a l  pressure and t o t a l  temperature were taken as con- 
stants corresponding t o  the stagnation chamber condi t ions fo r  the experiment of Ref. 1. For the low j e t  
momentum case, the pressure on the upper and lower tunnel wa l ls  were near ly equal and, consequently. the 
ve loc i t y  was assumed t o  be hor izon ta l  along t h i s  i n f l ow  boundary. For the higher j e t  momentum case, where 
the upper and lower wa l l  s t a t i c  pressures were c l e a r l y  d i f f e ren t ,  the f low angle angle d i s t r i b u t i o n  on the 
boundary was estimated from a so lu t i on  o f  the low-blowing case a t  a s ta t i on  c loser t o  the leading edge o f  
the a i r f o i l  where s i m i l a r  pressure di f ferences existed between the walls. 
associated energy d i ss ipa t i on  r a t e  were assumed constant a t  values t h a t  might correspond t o  the outer edge 
o f  an equ i l ib r ium boundary layer  a t  the tunnel t e s t  condi t ions.  

A t  the downstream. or outf low, subsonic boundary, only a precise spec i f i ca t ion  o f  the s t a t i c  pressure 
d i s t r i b u t i o n  i s  needed t o  ob ta in  a solut ion.  The experiment d i d  not provide a pressure d i s t r i b u t i o n  i n  
the  f low f i e l d  a t  t h i s  boundary, but  the equal tunnel-surface-pressure data a t  the upper and lower wa l ls  
a t  t h i s  l oca t i on  suggest t h a t  a constant pressure corresponding t o  t h e i r  measured values w w l d  be reason- 
able f o r  use on the e n t i r e  ou t f low boundary. 

A t  the  j e t  entrance boundary, d i s t r i b u t i o n s  o f  the  t o t a l  enthalpy, the mass f lux ,  and the f low angle 
d i s t r i b u t i o n s  were specified. These values were estimated from the  ve loc i t y  p r o f i l e s  and f low angles tha t  
were provided by the laser  doppler velocimeter (LDV) data i n  the v i c i n i t y  o f  the j e t  ex i t ,  as we l l  as from 
the t o t a l  j e t  plenum condi t ions and the j e t  mass f low rate.  This spec i f i ca t i on  enabled an exact duplica- 
t i o n  o f  the  j e t  mmentun coe f f i c i en t ,  a key parameter i n  the c a l i b r a t i o n  o f  c i r c u l a t i o n  cont ro l  a i r f o i l  
performance. The k i n e t i c  energy and energy d i ss ipa t i on  ra te  d i s t r i b u t i o n s  i n  the j e t  were assumed t o  be 
constants equal t o  the  estimated values i n  the f r e e  stream a t  the entrance t o  the tunnel t e s t  section. 
This assumption and possible consequences are discussed wre f u l l y  i n  the next section. 

tunnel t o t a l  condi t ions a t  the entrance and tunnel s t a t i c  pressure a t  the e x i t .  The j e t  i s  gradual ly 
introduced by c o n t r o l l i n g  the mass f low rate.  From t h i s  gent le  s t a r t  the f low relaxes smoothly. but  some- 
times w i th  a persistent.  but  damped osc i l l a t i on .  t o  convergence. 

Turbulence Modeling 

Although i t  i s  known (Ref. 11) tha t  f u l l  second-order, Reynolds-stress turbulence modeling captures 
the anisotropies and re la ted  reduct lon o f  sk in  f r i c t i o n  tha t  develop over convex curved surfaces such as 
e x i s t  a t  the t r a i l i n g  edge o f  a c i r c u l a t i o n  cont ro l  a i r f o i l .  t h i s  l eve l  o f  modeling i s  cu r ren t l y  too 
cos t l y  i n  terms o f  a lgor i thm de r i va t i on  and computer run  times t o  be considered a t  the cur ren t  stage o f  
development o f  the present cmputer  code. Consequently, the turbulence models used i n  t h i s  study employ 
the s imp l i f y ing  concept o f  an eddy v iscos i ty .  

The basic turbulence models t h a t  were used here f a l l  i n t o  two categories. The f i r s t  i s  an algebraic 
model. developed by Baldwin-Lomax (Ref. 7). The second i s  the two-equation model, developed by Jones and 
Launder (Ref 10). As these models are most appropriate fo r  ordinary attached boundary layers. var ia t ions  
of each o f  these models were a lso  employed t o  account f o r  the h i s to ry  o f  the development o f  the f ree  shear 
layer between the j e t  and the  upper surface boundary layer  f o r  the case o f  the algebraic model, as described 
la te r ,  and/or f o r  the extreme streamwise curvature o f  the t r a i l i n g  and leading edges i n  both models. 

the upper and lower surfaces o f  the a i r f o i l  are turbulent.  The experlmentors t r i pped  the  boundary layer 

Subsonic boundary condi t ions based on 
A t  the upstream boundary o f  

I n  

The k i n e t i c  energy and the 

The computations were i n i t i a t e d  by assuming no f low throughout the cont ro l  volume and applying the 

The LDV data o f  Ref. 1 ind ica te  t h a t  the boundary layers  approaching the t r a i l i n g  edge region on both 
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a t  X / C  = 0.075 on the lower surface, and suggest t ha t  t r a n s i t i o n  t o  turbulence also occurred on the 
upper surface very c lose t o  the leading edge. For these reasons, the turbulence was assumed t o  occur from 
the leading edge f o r  the algebraic models. 
automat ical ly when free-stream turbulence i s  introduced. although the loca t ion  and extent o f  t r a n s i t i o n  i s  
not necessarily phys ica l l y  correct .  
x/c = 0.05 on the upper surface, but as l a t e  as x /C  = 0.4 on the lower surface. 
ever, tha t  t h i s  l a t e  t r a n s i t i o n  on the lower surface w i l l  have only a secondary inf luence the ove ra l l  
behavior o f  the c i r c u l a t i o n  cont ro l  j e t .  

For the two-equation model, t r a n s i t i o n  t o  turbulence occurs 

For t h i s  model, the ca lcu la t ions  ind ica te  t r a n s i t i o n  i s  complete by 
I t  i s  expected, how- 

Recall tha t  the Baldwin-Lomax model, which i s  div ided i n t o  two zones, t rea ts  the inner zone w i t h  the 
van Dr ies t  form of the mixing length, which increases monotonically w i th  distance from the surface. The 
extent o f  the inner zone i s  determined by the loca t ion  of the po in t  where the product of the distance from 
the surface and the absolute value o f  the loca l  mean v o r t i c i t y  f i r s t  becomes a maximum. The s ize  o f  the 
eddy v i scos i t y  over much o f  the boundary layer i s  established by the value o f  the eddy v i scos i t y  a t  t h i s  
point .  I n  the reg ion  over the t r a i l i n g  edge where the  presence of the j e t  i s  s t i l l  d i s t i n c t .  t h i s  maximum 
occurs very close t o  the surface, we l l  below the po in t  of maximum ve loc i t y  i n  the j e t .  Since the t o t a l  
j e t  height i n  the experiment of Ref. 1 i s  only approximately 5% Of the upper-surface boundary-layer th i ck -  
ness a t  the l i p  o f  the  j e t ,  i t  i s  seen t h a t  the  Baldwin-Lomax model applied t o  the j e t  boundary layer  
i n te rac t i on  l a rge ly  ignores the much la rger  scales of the entrained boundary layer.  
cos i t y  i n  the f ree- in te rac t ion  zone between the surface j e t  and the boundary layer as given by the 
Baldwin-Lomax model can be expected t o  be too low, which l i m i t s  mixing w i th  the f ree  shear layer  and i n  
tu rn  permits the surface j e t  t o  maintain la rger  ve loc i t i es  as i t  moves around the t r a i l i n g  edge; however, 
the eddy v i scos i t i es  near the surface, below the pos i t i on  o f  the maximum ve loc i t y  i n  the j e t  are scaled 
properly. When combined w i t h  the fas te r  moving j e t ,  these proper eddy v i scos i t i es  a l low separation t o  
occur fa r the r  downstream. 

Thus, the eddy v i s -  

To assess the importance o f  t h i s  apparent def ic iency of the Baldwin-Lomax model, the basic model was 
modified t o  account f o r  the d i s t r i b u t i o n  o f  the eddy v i scos i t i es  w i t h i n  the j e t  a t  i t s  e x i t  and the bound- 
ary layer above the j e t  l i p .  Within the j e t ,  these eddy v i scos i t i es  were establ ished by assuming the j e t  
t o  behave as two boundary layers separated by an i n v i s c i d  core. This assumption was found t o  be consis- 
ten t  w i t h  the t o t a l  mass f low r a t e  o f  the  j e t  and the laser doppler ve loc i t i es  as measured i n  the exper i -  
ment o f  Ref. 1. I n  the top  surface boundary layer a t  the l i p  o f  the j e t  e x i t ,  the eddy v i scos i t i es  were 
establ ished as pa r t  o f  the ove ra l l  computation process. To account f o r  the "h is to ry"  o f  the j e t  develop- 
ment. these eddy v i scos i t i es  a t  the j e t  e x i t  s t a t i o n  were then blended w i t h  the loca l  eddy v i scos i t y  given 
by the Baldwin-Lomax model through a l i n e a r  weighting func t ion  t h a t  gave f u l l  weight t o  the  upstream 
values a t  the  j e t  e x i t  and f u l l  weight t o  the Baldwin-Lomax model a t  the t r a i l i n g  edge. No attempt was 
made t o  optimize the length o f  the reg ion  o f  blending. The process was used on ly  t o  ga in  some ins igh t  
i n t o  the  e f f e c t s  o f  t he  apparent shortcomings of apply ing the  Baldwin-Lomax model t o  the  present prob- 
lem. Corrections f o r  the e f fec ts  o f  streanvise curvature were made as recornmended i n  Ref. 9. 

With the  two-equation model. t he  i n te rac t i on  of the  j e t  and boundary layer  proceeds as pa r t  o f  the 
ove ra l l  so lu t i on  process. 
layer i n te rac t i on  zone was required. 
k i n e t i c  energy and energy d i ss ipa t i on  r a t e  a t  the e x l t  plane o f  the j e t .  The laser  doppler data o f  Ref. 1 
show ra ther  intense tu rbu len t  k i n e t i c  energy emerging from the j e t ,  however, no consistent way could be 
found t o  estimate the corresponding k i n e t i c  energy d i ss ipa t i on  r a t e  a t  the j e t  e x i t .  To permit  proceeding 
with the  so lu t i on  of  the  two-equation model, i t  was decided t o  bypass the problem o f  a r b i t r a r i l y  assigning 
d i ss ipa t i on  ra tes  t o  the measured k i n e t i c  energies by merely assuming t h a t  the  values o f  the k i n e t i c  
energy and d i ss ipa t i on  r a t e  a t  the j e t  e x i t  were the same as was estimated a t  the i n f l ow  boundary o f  the 
wind tunnel t e s t  section. Although t h i s  appears t o  be a ra the r  poor assumption. i t  i s  not bel ieved tha t  
it introduces serious e r ro r  i n  the  so lu t ions  because i t  was not iced tha t  both the k i n e t i c  energy and d i s -  
s ipa t ion  ra tes  increased very r a p i d l y  downstream o f  the j e t  e x i t  t o  values consistent w i th  those t h a t  
occur w i t h i n  shear layers. 
assumptions regarding the turbulence condi t ions a t  the  j e t  ex i t .  

two-equation model f o r  curvature recornmended i n  Ref. 12 were adopted here. 
i n  the des t ruc t ion  term o f  the  d i ss ipa t i on  equation i s  modif ied by a co r rec t i on  fac to r  equal t o  one minus 
a curvature coef f i c ien t  t imes a Richardson number. The modeling c o e f f i c i e n t  accounting f o r  curvature was 
set equal t o  the recommended value o f  0.2. The radius o f  curvature employed i n  the Richardson number was 
S e t  equal t o  t h a t  of the  surface of the model, not  l oca l  values along the streamlines. This was done f o r  
expediency; however, i t  i s  not bel ieved t o  introduce serious e r ro r  because those regions where the  tangen- 
t i a l  j e t  p lays i t s  most important r o l e  are qu i te  c lose t o  the body surface. Because the streanwise curva- 
tu re  terms are meant t o  be perturbat ions t o  uncorrected models o f  turbulence, the  curvature cor rec t ion  
fac to r  was r e s t r i c t e d  t o  values between 0.25 and 1.75. 

I n  contrast  t o  the mixing length model, no new modeling i n  the jet-boundary 
I t was necessary, however, t o  def ine boundary condi t ions f o r  the 

Future studies w i l l  examine the s e n s i t i v i t y  o f  the  solut ions t o  a l t e red  

To account f o r  the intense streamwise curvature i n  the Coanda region. the  methods o f  modifying the 
I n  t h i s  method the c o e f f i c i e n t  

RESULTS 

Test Conditions 

The computations shown i n  t h i s  paper apply t o  the  experimental condi t ions of Ref. 1 where both f low 
f i e l d  v e l o c i t i e s  and surface pressures were measured. I n  pa r t i cu la r .  computed r e s u l t s  are presented f o r  
the fo l lowing: 
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Test sect ion conditions: 
Velocity, U = 42.50 mfs 
Chord Reynolds number = lo6 
Free-stream Mach number = 0.121 
Total  temperature = 303.2 K 
Total  pressure = 98952.0 N/m2 

Chord o f  a i r f o i l .  c = 0.382 m 
Angle o f  at tack = 0" 
Dimensionless j e t  height, h/c = 0.002 
Ujet fUfree stream = 3.44 and 5-69 
Je t  momentum coe f f i c i en t ,  C, = 0.03 and 0.1 

Model conditions: 

Although Ref. 1 contains a i r f o i l  surface pressure data over a range o f  angles Of at tack from -5" t o  + S o .  
and includes j e t  momentum coe f f i c i en ts  up t o  about 0.4, the computations shown here were confined t o  those 
j u s t  indicated because i t  was under these condi t ions t h a t  LOV measurements were made i n  the  t ra i l ing-edge 
region. 
the j e t  ex i t ,  and as standards f o r  comparison w i th  the computed resu l ts .  O f  cwrse ,  i n  the f i n a l  val ida- 
t i o n  process o f  the computer code w i th  i t s  best turbulence model, the e n t i r e  range o f  the tes t  condi t ions 
o f e f .  1 should be computed and the r e s u l t s  compared w i th  the surface pressure data, l i f t .  drag, and 
p i t ch ing  moments. 

Example o f  Flow F i e l d  Results 

i n  the  wind tunnel t e s t  section. 
model and apply t o  the lower j e t  momentum c o e f f i c i e n t  equal t o  0.03. 
the a i r f o i l  w i t h i n  the e n t i r e  t e s t  section. 
i n  the downwash shown a t  the t r a i l i n g  edge and i n  the upwash a t  the leading edge tha t  i s  induced by the 
c i r c u l a t i o n  tha t  has been created. 
passes over the a i r f o l l  than underneath, and i s  an i nd i ca t i on  tha t  wind tunnel wa l l  interference i s  l i k e l y  
t o  be important i n  these experiments. 

o f  the j e t  i n  evaluat ing the absolute numerical values o f  the  streamlines because o f  a l oca l  new source o f  
mass. Accordingly. the l i n e s  shown should be considered t o  be streakl ines.  The spec i f i c  numbers on the  
l i n e s  are not proper stream func t ion  values and are used here merely as l i n e  i d e n t i f i e r s .  The anomalous 
behavior can be seen i n  the  enlarged f igures  as stagnat ion l i n e s  t h a t  do not meet the surface o f  the  a i r -  
f o i l  or those tha t  are inconsistent w i th  the  ve loc i t y  vectors near the t r a i l i n g  edge. Farther from the  
a i r f o i l  surface the  s t reak l ines  agree q u i t e  w e l l  w i t h  the  corresponding ve loc i t y  vector f i e lds .  

These ve loc i t y  measurements were used i n  the computations t o  def ine the flow condi t ions a t  

Figures 7 through 9 show examples of the f low f i e l d s  computed about the  c i r c u l a t i o n  cont ro l  a i r f o i l  
This group o f  computations i s  based on the urmodif ied Baldwin-Lomax 

Figure 7 shows the streamlines about 
The ove ra l l  e f f e c t  o f  the c i r c u l a t i o n  cont ro l  j e t  i s  evident 

I t i s  s i g n i f i c a n t  t ha t  a l a rge r  p ropor t ion  o f  the wind tunnel a i r f l o w  

It should be noted tha t  the p l o t t i n g  rou t i ne  used here has d i f f i c u l t y  i n  accounting f o r  the presence 

The d e t a i l s  o f  the f l o w  f i e l d  i n  the leading-edge reg ion  are shown In  the  expanded p l o t s  o f  Fig. 8, 
where (a) shows the streamlines and (b) shows the  ve loc i t y  vector f i e l d .  The l a t t e r  f i g u r e  ind ica tes  tha t  
the stagnat ion po in t  occurs a t  about 2% o f  chord on the  lower surface o f  the a i r f o i l .  The ve loc i t i es  
passing over the  leading edge t o  the  upper surface are much la rger  than the f ree  stream values and suggest 
considerable leading edge suction. There I s  no evidence o f  a leading-edge separation bubble on the  upper 
surf ace. 

S imi la r  de ta i l ed  f low f i e l d  r e s u l t s  are shown a t  the t r a i l i n g  edge i n  Fig. 9. On Fig. 9(a), the 
streamline labeled 0.00, away from the  surface o f  the body. i s  approximately the  lower bound o f  the f ree-  
stream a i r  passing over the  top o f  the a i r f o i l .  
i s  e f f e c t i v e  i n  inducing considerable downwash a t  the t r a i l i n g  edge. 
evident i n  Fig. 9(b), and i t  can be seen t o  e x i s t  we l l  around the t r a i l i n g  edge. 
however, t h a t  the j e t  has separated from the surface a short  d istance ahead o f  the t r a i l i n g  edge. This 
cannot be seen c l e a r l y  from the  f igure ,  bu t  i s  detected i n  the  calculated sk in  f r i c t i o n  direct ions.  

Comparative Turbulence Model Performance 

Figure 10 and Table 1 show the computed pred ic t ions  o f  the the l i f t  coe f f i c i en ts  i n  comparison w i th  
the experimental r e s u l t s  o f  Ref. 1. The l i f t  data were obtained i n  Ref. 1 from in teg ra t i on  o f  the experi- 
mental pressure d i s t r i b u t i o n s  about the a i r f o i l .  The calculated l i f t  was computed i n  a s i m i l a r  way from 
the loca l  calculated surface pressures. For t h i s  paper. most o f  the  a i r f o i l  computations were performed 
f o r  the j e t  momentum c o e f f i c i e n t  equal t o  0.03, w i th  j u s t  one case shown f o r  Cu = 0.1. Recal l  these were 
the j e t  condi t ions where laser  doppler measurements were made o f  the t r a i l i n g  edge f low f i e l d  i n  add i t ion  
t o  surface pressure measurements on the model. The turbulence models ind ica ted  here were described i n  a 
previous section. 

It I s  observed from the f i g u r e  and the tab le  t h a t  the basic Baldwin-Lomax turbulence model y i e l d s  
resu l t s  tha t  are approximately 50% higher than the  data a t  each value o f  the j e t  momentum coe f f i c i en t .  
Including the e f f e c t  o f  the j e t  h i s to ry  causes the l i f t  t o  r i s e .  The reason f o r  t h i s  i s  t h a t  the j e t  a t  
i t s  ex i t ,  as assumed i n  the calculat ions,  possesses qu i te  a low value o f  eddy v i scos i t y  r e l a t i v e  t o  tha t  
which the Baldwin-Lomax model would p red ic t  f o r  the  s ta t ions  downstream o f  the j e t  e x i t .  Consequently, 
the weighting procedure adopted t o  account f o r  the  j e t  h i s t o r y  lowers the eddy v i scos i t i es  i n  the f ree  

It shows tha t  the t r a i l i n g  edge j e t  hugging the surface 
The presence o f  the j e t  i s  very 

It should be noted, 
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shear layer between the j e t  and the over laying boundary layer. The r e s u l t  o f  t h i s  I S  t o  reduce the mixing 
and, hence. the re ta rda t ion  o f  the j e t  and t o  al low i t  t o  move fa r the r  around the Coanda region. Alterna- 
t i v e l y ,  the near wa l l  eddy v i scos i t i es  are not a f fec ted  nuch by the j e t  h i s to ry  weighting. 
e f f e c t  o f  less j e t  re ta rda t ion  and s im i la r  eddy v i scos i t i es  i n  the v i c i n i t y  o f  the wa l l  cause the po in t  of 
separation t o  move fa r ther  around the t r a i l i n g  edge, which i n  turn, contr ibutes t o  the increased l i f t .  It 
i s  i n te res t i ng  t h a t  the  Jones-Launder model y ie lds  essent la1ly the  siune resu l ts .  which indicates tha t  the 
h i s to ry  e f fec ts  tha t  are inherent i n  the two-equation model were f o r t u i t o u s l y  approximated w i th  the 
weighting procedure adopted here f o r  the Baldwin-Lomax algebraic model. 

The e f f e c t  o f  the curvature cor rec t ion  i n  the algebraic model i s  t o  reduce the l i f t .  With the value 
o f  the curvature cor rec t ion  coef f i c ien t .  Cc, introduced i n  Ref. 9 set equal t o  8.0, i t  i s  found tha t  the 
l i f t  i s  s t i l l  about 3 7 1  higher than the  experimental value a t  C = 0.03. The reason f o r  the reduct ion o f  
l i f t  introduced by the curvature co r rec t i on  i s  t ha t  i t  reduces t i e  eddy v i scos i t y  between the maximum 
ve loc i t y  i n  the j e t  and the wall, wh i le  general ly increasing the eddy v i scos i t y  i n  the i n te rac t i on  zone 
between the j e t  and the ex te r io r  f low. Thus. the j e t  i s  retarded more by the external  f low and increas- 
i ng l y  susceptible t o  separation. 
and r e s u l t  i n  a reduct ion o f  the ove ra l l  l i f t .  To approach the experimental data by reducing the l i f t  
even more, some runs were made w i t h  the code w i t h  values of C = 10.0 and 12. I t  was found tha t  the 
increment o f  reducing the l i f t  diminished and tha t  some per iodfc o s c i l l a t i o n s  were introduced i n t o  the 
solut ion.  Also, these values o f  
achieve agreement w i th  the data o f  Ref. 8. 
behaved i n  t h e i r  comparisons w i th  the d i f f e r e n t  experiments was p r imar i l y  the r e s u l t  o f  the freedom 
enjoyed i n  Ref. 9 o f  a lso  being able t o  adjust  the angle of attack. 
Baldwin-Lomax model's a b i l i t y  t o  handle the complexities of t h i s  flow. we d i d  not pursue t h i s  matter f u r -  
ther a t  t h i s  time. 

The combined 

These e f fec ts  combine t o  move the separation po in t  towards the j e t  e x i t  

C, are an order of magnitude la rger  than those required i n  Ref. 9 t o  
It i s  believed t h a t  the d i f fe rence i n  the way the two codes 

Because o f  inherent weaknesses of the  

The l a s t  mod i f i ca t ion  made t o  the  Baldwin-Lomax model was t o  combine the ef fects o f  j e t  h i s t o r y  and 
curvature. As expected, the e f fec ts  tended t o  cancel and resu l ted  i n  values of l i f t  c lose t o  tha t  o f  the 
o r i g i n a l  Baldwin-Lomax model. The Jones-Launder two-equation model, corrected f o r  curvature as i n  
Ref. 12, a lso  y i e l d s  r e s u l t s  t h a t  are qu i te  s im i la r  t o  those of the o r i g i n a l  Baldwin-Lomax model, or i t s  
var iants t h a t  contain curvature correct ions.  
a i r f o i l ,  but  has a lso  been demonstrated In  the  computation of t ransonic a i r f o i l s  wl thout curvature correc- 
t i ons  (Ref 13). For a c i r c u l a t i o n  a i r f o i l ,  then, the only advantage of using the Jones-Launder two- 
equation model i s  i t s  a b i l i t y  t o  account f o r  the j e t  h i s t o r y  wi thout add i t iona l  modeling assumptions. I t 
i s  known t h a t  the  performance o f  t he  Jones-Launder model can be improved considerably, and procedures f o r  
doing t h i s  are l i s t e d  l a t e r  i n  the  descr ip t ion  o f  the future d i rec t i ons  t h i s  code va l i da t i on  process may 
take. 

The streamline patterns i n  the t r a i l i n g  edge region o f  the c i r c u l a t i o n  cont ro l  a i r f o i l  corresponding 
t o  the d i f f e r e n t  var ian ts  of the Baldwin-Lomax model are shown i n  Fig. 11. These are i n  agreement w i t h  
the  explanations given above f o r  the  behavior o f  the lift, and can be seen best by comparing the pos i t ions  
o f  the  streamline labeled 0.01 i n  Figs. I l ( a )  t o  I l ( c ) .  With reference t o  Fig. I l ( a ) ,  corresponding t o  
the basic Baldwin-Lomax model, the  strea.:ilines i n  Fig. l l ( b ) ,  inc lud ing  the e f f e c t s  o f  j e t  h is to ry ,  show a 
decided movement clockwise around the  t r a i l i n g  edge which i s  re f l ec ted  i n  increased l i f t .  
cor rec t ion  alone, Fig. l l ( c )  shows a counter-clockwise movement r e l a t i v e  t o  Fig. l l ( a ) .  F ina l l y ,  the 
combined e f fec ts  o f  j e t  h i s to ry  and curvature corrections, as shown i n  Fig. l l ( d ) ,  b r i ng  the streamline 
pa t te rn  almost back t o  i t s  o r i g i n a l  form (Fig. l l ( a ) ) .  

coe f f i c ien t ,  C, = 0.03. when the basic Jones-Launder two-equation model i s  used. As expected from the 
comparisons o f  the r e s u l t s  fo r  lift, the stream pa t te rn  shown i n  Fig. 12(a) i s  v i r t u a l l y  i den t i ca l  w i t h  
tha t  o f  Fig. I l ( b ) .  corresponding t o  the Baldwin-Lomax model w i t h  j e t  h is to ry .  The vector p l o t  
(Fig. 12(b)) shows separation t o  occur on the surface of the a i r f o i l  j u s t  beyond the  t r a i l i n g  edge i n  a 
clockwise d i rec t ion .  I t  i s  remarkable how large a "dead water region" (i.e., very low ve loc i t y )  ex i s t s  
j u s t  below the t r a i l i n g  edge. The r e l a t i v e l y  la rge  spacing between the  streamlines labeled 0.000 and 
0.016 on Fig. 12(a) are also i nd i ca t i ve  o f  th is .  

A comparison o f  Figs. 12(a) and 12(c) shows the  ef fect  o f  the  curvature co r rec t i on  on the Jones- 
Launder model on the streamline pa t te rn  i n  the  t ra i l ing-edge zone. Near the surface, the  curvature cor- 
r e c t i o n  introduces a decided counter-clockwise no t i on  t o  the  f low f ie ld .  In addition, there i s  s i g n i f i -  
can t ly  less  downwash i n  the fa r  f i e ld .  The vector f i e lds ,  shown i n  Figs. 12(b) and 12(d), support these 
observations and g i ve  more d e t a i l  of the  j e t  behavior near the  surface. The i d e n t i t y  o f  the j e t  remains 
evident t o  fa r ther  clockwise pos i t ions  wi thout the curvature correct ion.  This f low pat te rn  behavior i s  
consistent w i t h  an increase i n  the j e t - f ree  stream mixing and a s ign i f i can t  reduct ion i q  the l i f t  as a 
r e s u l t  o f  the curvature correct ion.  

Lomax model f o r  the two values o f  j e t  momentum coe f f i c i en t  used here. Figure 13(a) i s  a blowup o f  the 
streamline pa t te rn  shown e a r l i e r  i n  Fig. 7 for C, = 0.03. Figure 13(b), corresponding t o  C, = 0.1, 
shows how dramat ica l l y  t he  f low under the  e n t i r e  a i r f o i l  i s  af fected by the increase i n  the  j e t  momentum 
coef f i c ien t .  
passes over the upper surface of the  a i r f o i l  i s  thrown forward under the  a i r f o i l  t o  about 20% chord by the 
c i r c u l a t i o n  con t ro l  j e t .  The complexities o f  t h i s  flow ce r ta in l y  tax  the bases o f  the  Baldwin-Lomax 
model, the on ly  one used t o  date f o r  t h i s  f l o w  condi t ion.  

This conclusion i s  not unique t o  the c i r c u l a t i o n  cont ro l  

The curvature 

Figure 12 shows the f l ow  f i e l d  i n  the t ra i l ing-edge region corresponding t o  the smaller jet-mass 

Figure 13 shows the  streamline pa t te rn  around the  e n t i r e  a i r f o i l  corresponding t o  the basic Baldwin- 

The a i r  e x i t i n g  the j e t  i s  seen t o  c i r cu la ted  about the a i r f o i l .  The a i r  t ha t  o r i g i n a l l y  
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Figure 14 shows a comparison o f  the computed and measured t ra i l ing-edge mean streamline patterns f o r  
both values o f  the j e t  momentum coe f f i c i en t .  
Baldwin-Lomax model, wi thout modif icat lons.  Figure 14(a) i s  a more de ta i led  version of Fig. l l ( a ) ,  corre- 
sponding t o  a value o f  j e t  momentum coe f f i c i en t ,  C, = 0.03. 
f o r  C,, = 0.1. Figures 14(c) and 14(d) show the experimental r e s u l t s  from Ref. 1 f o r  the same p a i r  o f  
values o f  j e t  momentum coeff ic ient .  
C, = 0.03 
mental l i f t  f o r  C, = 0.1 a lso  i s  much less than the computed l i f t ;  however. i t  i s  above t i e  computed 
l i f t  f o r  the case o f  C, = 0.03, see Table 1. The patterns o f  the f low f i e l d s  i n  Figs. 14(a). (b). and 
(d) are general ly consistent w i t h  these observations. The experlmental f l o w  pa t te rn  f o r  C, = 0.1. except 
f o r  exh ib i t i ng  some waviness, general ly l i e s  between the two computed patterns. Some features appear i n  
the streamline pa t te rn  o f  Fig. 14(c) t h a t  are inconsistent w i th  the l i f t  behavior. Although i n  the imne- 
d ia te  v i c i n i t y  of the surface, the experimental streamlines t u r n  less  clockwise than the computed values 
shown i n  Fig. 14(a). consistent w i th  the r e l a t i v e  l i f t s ,  the experimental flow pat te rn  away from the sur- 
face indicates more downwash than does the computation. 
l i f t  i s  not c lear  a t  t h i s  t i m e  and w i l l  requ i re  fu r the r  study and in te rac t i on  w i th  the experimentors. as 
w i l l  the anomalous r e s u l t s  shown i n  the next f igure.  

Figure 15 shows comparisons o f  the measured pressure Coef f i c ien ts  on the upper and lower surfaces o f  

The conputations shown i n  these f igures  are based on the 

Figure 14(b) i s  the corresponding f i gu re  

Recall, now. tha t  the experimental l i f t  produced by the value o f  
i s  rmch less  than t h a t  corresponding t o  the computation f o r  the same value o f  C . The experi- 

Why t h i s  i s  not re f l ec ted  i n  more experimental 

the a i r f o i l  i n  comparison w i th  some o f  the computations. 
( c i r c u l a r  symbols), w i th  computed r e s u l t s  ( s o l i d  l i nes )  based on the Baldwin-Lomax model containing cor- 
rec t ions  f o r  curvature f o r  the same values o f  j e t  momentum coe f f i c i en t .  C, = 0.03. Figure 15(d) shows a 
s im i la r  comparison f o r  the Jones-Launder model, w i th  curvature correct ion.  These a l te rna t i ve  model com- 
parisons are v i r t u a l l y  i den t i ca l .  The o s c i l l a t i o n s  i n  the computed quant i t ies  on the upper surface near 
the leading edge are bel ieved t o  have resu l ted  from the f i r s t - o r d e r  c u r v e - f i t t i n g  procedure employed t o  
in te rpo la te  between the wind tunnel model coordinates i n  se t t i ng  up the a i r f o i l  surface coordinates f o r  
the computation mesh. 
the conclusions tha t  can be drawn therefrom. 
la rger  area between the upper and lower l i n e s  than exh ib i ted  by the area bounded by the experimental 
points.  
resu l t s  occurs over the forward po r t i on  o f  the a i r f o i l .  
d i f f e r  considerably from the measured values because o f  t h i s  behavior. 

i s  c r i t i c a l  t o  our understanding o f  the d i rec t i ons  fu tu re  turbulence modeling mod i f i ca t ions  should take 
fo r  t h i s  c lass o f  flow. Towards t h i s  end, i t  was decided t o  compare computations w i th  data a t  the same 
l i f t ,  accomplished by comparing w i th  experimental data a t  a higher j e t  momentum c o e f f i c i e n t  t ha t  provides 
the  proper l i f t .  From Fig. 10 i t  i s  seen tha t  such a match ex i s t s  w i t h  the  computations o f  the Baldwin- 
Lomax model w i th  j e t  h i s t o r y  or the basic Jones-Launder model w i t h  C, = 0.03 and the experimental data 
a t  C = 0.62. The comparisons o f  pressure coe f f i c i en ts  from these computations and the  experimental data 
are s h u n  i n  Figs. 15(b) and 15(c). 
models agree i n  these figures. I n  each f igure ,  the apparent area between the computed l i nes  now agrees 
more c lose ly  w i t h  the area between the groups o f  data points. As i n  Fig. 15(a). but  t o  a lesser extent, 
on the upper surface, the  computed pressure c o e f f i c i e n t  shows more o f  a suct ion peak i n  the v i c i n i t y  o f  
the leading edge than i s  exh ib i ted  by the data. A t  the t r a i l i n g  edge. less  suct ion i s  generated. It i s  
c lea r  tha t  an Improvement i n  the turbulence model t h a t  would achieve the cor rec t  suct ion peak i n  the 
trai l ing-edge region, a t  the  proper or matched lift. would be he lp fu l  i n  reducing the leading edge suct ion 
peak. This i n te rp lay  o f  the behavior o f  the  leading-edge and t ra i l ing-edge f low regions was not evident 
i n  the  e a r l i e r  work (Refs. 8 and 9). 
actual geometric angle o f  attack, as recmmended by the  experimenters o f  Ref. 8, were introduced simulta- 
neously w i th  turbulence model changes t o  improve the  pressure coe f f i c i en t  behavior i n  the leading edge 
region. 
c i p l e  one should not be j u s t i f i e d  I n  modifying geometr ical ly establ ished angles o f  attack. The burden 
should be on the improvement o f  the turbulence model so t h a t  resu l ts ,  t o  the  accuracy required by the 
user. are at ta ined when ambiguities i n  the  boundary condi t ions are minimized or assessed. For example, 
Fig. 16 shows the calculated upper and lower wind tunnel wa l l  s t a t i c  pressure coe f f i c i en ts  corresponding 
t o  the case where C = 0.03 w i th  the Jones-Launder turbulence model and some representat ive experimental 
measurements. The dyfferences i n  the pressure coe f f i c i en ts  a t  the upstream boundary ind ica te  the extent 
of the upstream inf luence on the  f low caused by the c i rcu la t ion .  Recall t h a t  only the t o t a l  pressure was 
assigned a t  t h i s  boundary and these s t a t i c  pressure di f ferences developed as pa r t  o f  the solut ion.  D i f -  
ferences between the measured and calculated s t a t i c  pressures a t  t h i s  s ta t i on  would suggest t ha t  the 
assumption of zero angle o f  f low f o r  the  incomlng streamlines. employed i n  the ca lcu la t ions  w i th  
C = 0.03, may have introduced some er ro r .  
s!ream angles a t  the  entrance t o  the t e s t  section) would have el iminated some degree o f  uncertainty i n  the 
calculat ions.  

Figure 15(a) compares the experimental data 

I t  i s  not bel ieved tha t  these o s c i l l a t i o n s  ser iously impair the global  r e s u l t s  or 
The la rger  computed l i f t .  noted ear l ie r ,  i s  shown by the 

I n  addi t ion.  i t  i s  shown here t h a t  a la rge  pa r t  o f  the increased l i f t  evident i n  the computed 
The computed drag and p i t ch ing  moments also w i l l  

The cause o f  the large leading-edge suct ion pressure shown i n  the computations and absent i n  the data 

F i r s t ,  it i s  s t r i k i n g  how c lose ly  the  r e s u l t s  f o r  the two turbulence 

In  the  ca lcu la t ions  o f  Ref. 9. "wind tunnel correct ions" t o  the 

I n  the current work, w i th  the  inc lus ion  o f  the wind tunnel wa l ls  i n  the  calculat ions,  i n  p r i n -  

This i s  an example where more complete documentation (i.e., 

Before leaving t h i s  section, It should be mentioned t h a t  none o f  the solut ions described were eas i l y  

Even though the algor i thm i s  robust ( i n  t h a t  once debugged, i t  could be operated w i th  
obtained. The algorithm, developed f o r  compressible flows, seemed t o  be taxed by the complex low subsonic 
f l o w  studied here. 
very large time steps or CFL numbers. as b e f i t t i n g  a good i m p l i c i t  code) there was a problem obtaining 
quick convergence f o r  the c i r c u l a t l o n  cont ro l  a i r f o i l  a t  a l l  the condi t ions studied. 
t i o n  process from an i n i t i a l  f low cond i t ion  towards a new steady state,  the so lu t i on  would o s c i l l a t e  very 
slowly w i t h  no apparent phys ica l l y  based cha rac te r i s t l c  frequency. The o s c i l l a t i o n  was re la ted  more t o  

During the relaxa- 
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the number of i t e ra t i ons ,  as seen by comparisons a t  d i f f e r e n t  values o f  CFL number. 
o s c i l l a t i o n s  sometimes seemed dependent on the s i ze  o f  the CFL number. 
t i ons  persisted i nde f in i t e l y .  The so lu t i on  behaved as i f  the feedback between the various boundaries made 
the equation set very s t i f f .  The ove ra l l  l i f t  was the aerodynamic parameter focused upon. and f o r  the 
solut ions present, t h i s  parameter converged t o  w i t h i n  1%. even i n  the presence o f  osc i l l a t i ons .  The 
number o f  i t e ra t i ons  required t o  a t t a i n  t h i s  convergence leve l  could be from several hundreds t o  a few 
thousand. The la rger  number o f  i t e r a t i o n  Counts was required when the j e t  momentum coe f f i c i en t  was the l o w  
value o f  C, = 0.03. A t  the higher value of C, = 0.1. the convergence r a t e  o f  a few hundred i t e ra t i ons  
i s  very respectable. Current ly the code i s  unvectorized and computations cost 10 t o  15 s e d i t e r a t i o n  on a 
Cray XMP f o r  the  algebraic and two-equation turbulence models, respect ively.  
e f f i c iency ,  wh i le  not c r i t i c a l .  i s  c e r t a i n l y  worth pursuing t o  enhance the code's e f f i c iency  a t  the lower 
f ree  stream speeds and lower j e t  momentum coef f i c ien ts .  

solut ions had achieved an acceptable l eve l  of convergence, other aerodynamic parameters such as the p i t ch -  
ing  mment or the pressure drag, because of t h e i r  dependence on r e l a t i v e l y  small d i f ferences between large 
quant i t ies ,  continued t o  show d ispropor t ionate ly  la rge  osc i l l a t i ons .  
numerical f i t  t o  the body shape and g r i d  about the leading edge o f  the a i r f o i l  w i l l  reduce the raggedness 
o f  the surface pressure i n  t h i s  region shown i n  Fig. 15. 
the o s c i l l a t i o n  o f  the higher order aerodynamic parameters. 

The magnitude o f  the 
On some occasions, the o s c i l l a -  

Increased computational 

Although the 1% o s c i l l a t i o n  i n  l i f t .  the Overall f low pattern. and the  f r i c t i o n  drag indicated the 

It i s  expected tha t  improving the 

The improved g r i d  may also reduce the range o f  

CONCLUDING REMARKS 

This paper presents the ea r l y  stages i n  a program t o  ca l i b ra te  and va l ida te  a computer code being 
developed t o  compute the performance o f  c i r c u l a t i o n  cont ro l  a i r f o i l s .  The opportuni ty t o  attempt t h i s  
va l i da t i on  process arose because o f  1) the a v a i l a b i l i t y  of new data from an experiment t h a t  included mean 
f low and turbulence measurements I n  add i t ion  t o  model surface pressure data (Ref. 1). and 2) the  develop- 
ment o f  a computer code tha t  could account f o r  the presence of a model w i t h i n  wind tunnel walls, w i t h  the 
l a t t e r  experiencing s l i p  f low conditions. The code I s  cu r ren t l y  two-dimensional, requ i r i ng  the model t o  
be an a i r f o i l ,  and on ly  accounts f o r  the upper and lower wind tunnel wal ls.  The computer code i s  also 
capable o f  accepting d i f f e r e n t  k inds o f  turbulence models, both algebraic o r  those based on a u x i l i a r y  
f i e l d  equations f o r  turbulence quant i t ies .  
speed compressible f lows (Ref. 2) has proven t o  be on ly  marginal ly economical f o r  t h i s  low-speed f low 
cond i t ion  a t  the  lower j e t  momentum coef f i c ien t .  Under these conditions, the code present ly i s  useful  
only as a research t o o l  when enough mesh po ln ts  are employed t o  provide numerical r e s u l t s  tha t  are mesh 
independent. 

Inc lus ion  o f  the wind tunnel wa l ls  i n  the ca lcu la t ions  was expected t o  e l im ina te  some o f  the uncer- 
t a i n t l e s  introduced by empir ical  wind tunnel Wall "correct ions" and t o  place the burden squarely on the 
turbulence models t o  achieve an agreement between computations and experimental data, provided adequate 
boundary cond i t ion  data are known f o r  the incoming and outf lowing boundaries o f  the t e s t  section. The 
present computed resu l ts ,  which show higher suct ion pressures a t  the leading edge and less downwash beyond 
the t r a i l i n g  edge than indicated i n  the  experimental data, even when t o t a l  l i f t  i s  matched t o  the  experi- 
mental resu l ts ,  are i nd i ca t i ve  o f  a negative e f fec t i ve  angle of attack. The cause o f  t h i s  anomalous 
behavlor i s  not known a t  t h i s  t ime,  bu t  could r e s u l t  from an induced three-dimensional e f f e c t  t h a t  was not 
detected i n  the  experiment and could not be generated by the  present two-dimensional f low code. 

sec t ion  boundaries and the apparent residual  angle o f  attack, even i n  the presence o f  the  computed w a l l  
e f fec ts .  and the  r e l a t i v e l y  uneconomical behavior o f  the compressible f low code applied t o  low speeds, the  
current study provlded several positive r e s u l t s  regardlng the process o f  va l i da t i ng  a code f o r  the  design 
o f  c l r c u l a t i o n  cont ro l  a i r f o i l s .  Some o f  these are as follows: 

F ina l l y ,  the code, which I s  known t o  be economical f o r  high- 

Despite these aforementioned uncer ta in t ies  regarding the e f f e c t s  o f  undefined condi t ions on the t e s t  

1. 

2. 

3 .  

4. 

Computations applying turbulence models t h a t  are used commonly i n  Navier-Stokes codes. namely. 
the  Baldwin-Lomax algebraic model and var ian ts  t o  account fo r  curvature and the h i s t o r y  o f  j e t  
merging w i t h  the external  f low f l e l d  o r  the Jones-Launder k-epsi lon model w i t h  correct ions f o r  
s t r e a w i s e  curvature. show l i t t l e  difference between each other and both provide good q u a l i t a t i v e  
descr ip t lons  o f  the f l ow  f i e l d s  about the  c l r c u l a t i o n  cont ro l  a i r f o i l .  

The code proved t o  be r e a d i l y  adaptable t o  higher order turbulence modeling. and the cost penal ty 
o f  running the  two-equation model r e l a t i v e  t o  the  zero equation model was on ly  an increase o f  
50%. 

The code converged s u f f i c l e n t l y  r a p i d l y  i f  the  i n i t i a l  condi t ions were a previous so lu t i on  a t  
somewhat d i f f e r e n t  f low condi t ions o r  w i t h  a d i f f e ren t  turbulence model. I t  was also not iced 
t h a t  convergence occurred qu i te  r a p l d l y  a t  the  high Value of the j e t  momentum coe f f i c i en t .  These 
cha rac te r i s t l cs  should be use fu l  i n  parametric studies involved i n  the u l t imate  va l i da t i on  pro- 
cess under low-speed conditions. 

The code i s  w r i t t e n  i n  a generalized coordlnate frame. This fea ture  allowed generation o f  the 
mesh invo lv ing  the a i r f o i l  and wind tunnel wa l l  t o  be very d i rec t ,  and should be eas i l y  adapted 
t o  include geometric angles of attack. This w i l l  be needed t o  inves t iga te  the apparent angle o f  
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at tack evident i n  the experimental data and t o  a l low Covering the range o f  angle o f  at tack mea- 
sured i n  Ref. l. 

5. For the l im i ted  cases computed t o  date, the turbulence models enrployed ind ica te  quan t i t a t i ve  
resu l t s  that ,  f o r  g iven j e t  mass coeff ic ients,  show values o f  l i f t  tha t  are approximately 50% too  
high a t  both values o f  j e t  mass f low tha t  have been computed. 
possibly be "cal ibrated",  but  such a task requires computation a t  other t e s t  condi t ions t o  con- 
f i r m  the concept. 

This suggests tha t  the code could 

With these resu l ts .  decisions have t o  made how t o  proceed i n  advancing the va l i da t i on  of t h i s  code. 
Should one t r y  t o  ca l i b ra te  the  code over the e n t i r e  range o f  condi t ions f o r  which experimental data 
exists,  even though i t  i s  apparent t h a t  the  c a l i b r a t i o n  may involve large. and possibly non-uniform. 
adjustments t o  the computed resu l t s?  O r  should one t r y  t o  f i r s t  e l im ina te  the  uncer ta in t ies  i n  the bound- 
ary condi t ions through consu l ta t ion  w i th  the experimenters and then improve an ex i s t i ng  turbulence model, 
o r  ob ta in  a new turbulence model, t o  y i e l d  values o f  a l l  the aerodynamic coe f f i c i en ts  tha t  are close and 
consistent w i t h  trends o f  a l i m i t e d  set o f  experimental data? This second approach. i f  successful, could 
enable one t o  proceed w i th  confidence w i t h  the va l i da t i on  process over the ranges f o r  which the c i r cu la -  
t i o n  cont ro l  a i r f o i l  has been tested. 

The authors agree w i t h  the l a t t e r  o f  these two philosophies, but are aware o f  the d i f f i c u l t i e s  i n  
advancing a turbulence model t o  flow condi t ions t h a t  are large extrapolat ions beyond the condi t ions o f  the 
fundamental f l u i d  dynamic experiments upon which the cur ren t  models u t i l i z e d  here were based. I n  the 
present example, such experiments involved surface j e t s  on planar o r  curved surfaces, and free shear 
layers between surface j e t s  and boundary layers; however. the r a d i i  o f  surface curvature and pressure 
gradients were orders of magnitude less  i n f l u e n t i a l  than those which e x i s t  i n  the t r a i l i n q  edge o f  a c i r -  
cu la t i on  a i r f o i l .  Thus, i t  i s  not surpr is ing  t h a t  the models employed i n  the present paper were not ade- 
quate f o r  design. 

and turbulence modeling modif icat ions w i l l  be t r ied :  
The authors are cont inuing t o  develop the computer code. I n  the near future.  the fo l low ing  numerical 

1. 

2. 

3 .  

4. 

5. 

6. 

7.  

8. 

Close a t ten t i on  w i l l  be placed on obtaining a smooth body contour a t  the leading edge t o  eliml- 
nate t h i s  as source o f  numerical problems. 

Numerical a lgor i thm improvement f o r  low-speed condi t ions i s  s t i l l  warranted and i s  being pursued. 

S e n s i t i v i t y  studies w i l l  be conducted w i t h  var ia t ions  i n  the stream angles enter ing the t e s t  
sect ion and w i t h  small changes i n  the angle o f  attack. 
the  quan t i t i es  used I n  the s e n s i t i v i t y  studies w i l l  be checked through consu l ta t ion  w i t h  the 
authors o f  Ref. 1.) 

S e n s i t i v i t y  studies w i t h  the Jones-Launder model p lus  curvature w i l l  be conducted t o  t e s t  the 
need f o r  de f in ing  the  turbulence, I n  scale and In tens i ty ,  a t  the e x i t  plane o f  the j e t .  

Wall funct ions w i l l  be Introduced t o  the Jones-Launder model. 
Jones-Launder model i n  t ransonic f lows (Ref. 14) and i n  subsonic deadwater regions (Ref. 15). 

The Jones-Launder model w i l l  be modif ied t o  account f o r  the e f fec ts  o f  streamwise curvature by 
re in te rp re t i ng  the k i n e t i c  energy equation t o  account f o r  anisotropy i n  a manner s im i la r  t o  what 
was done i n  Ref. 11. 

The Jones-Launder model w i l l  be modified t o  re lax  the eddy v i scos i t y  concept through the use of 
Rodi 's algebraic stress model (Ref. 16). 

F u l l  Reynolds s t ress  modeling w i l l  be introduced i n  the  manner o f  Ref. 3. 

(The reasonableness o f  the magnitudes o f  

These were found t o  help the 

A t  present i t  i s  not c lea r  what l eve l  o f  modeling w i l l  lead t o  r e s u l t s  t h a t  are reasonably accurate and 
cha rac te r i s t i c  o f  the behavior o f  changes i n  the  data w i t h  a l t e ra t i ons  i n  the f low Conditions t o  warrant 
f i n e  tuning through ca l ib ra t ion .  Success here, w i l l  lead t o  t e s t i n g  the code over the e n t i r e  range of 
condi t ions o f  the experiment o f  Ref. 1 and f o r  a new experiment being conducted a t  the NASA Ames Research 
Center t h a t  w i l l  extend the data. s i m i l a r  t o  t h a t  obtained i n  Ref. 1. t o  a c i r c u l a t i o n  cont ro l  a i r f o i l  
w i th in  a t ransonic flow. 

Although Ref. 1 was we l l  wr i t ten,  i t  was found dur ing the  computations described here t h a t  occasions 
arose when consu l ta t ion  was required w i t h  the authors of t ha t  paper t o  c l a r i f y  some o f  the experimental 
conditions. The exce l len t  cooperation given by these exper imental ists was extremely benef ic ia l  t o  the 
current work and i s  a demonstration o f  the  strong need f o r  c lose Looperation between exper imental ists and 
code va l ida tors  tha t  should be a Continuing process f o r  f u tu re  studies. 
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TABLE 1 

COMPARISON OF WPERlMENTAL AND COMPUTED LIFT COEFFICIENTS 

SOURCE 

EXPERIMENT 

COMPUTATIONS 
BALDWIN-LOMAX (BL) 

BL + HISTORY 
BL +CURVATURE 

cc = 0.0 

+ HISTORY 
BL +CURVATURE 

JONES-LAUNDER (JL) 

JL +CURVATURE 

EXPERIMENT 

COMPUTATIONS 

BL 

JET MOM. COEFFICIENT, LIFT COEFFICIENT, ERROR, 
=c CL 76 

0.03 1.50 

0.03 

0.03 

0.03 

2.26 

2.51 
2.08 

6 1  

+67 

+37 

0.03 2.24 +49 

0.03 

0.03 
2.54 +69 

2.08 +39 

0.10 

0.10 

3.68 

6.30 +48 

REGION OF FLOW FIELD PROVIDED BY REF. 0 
FOR PRESCRIBED LIFT AND ANQLE OF ATTACK 

Figure 1.- Sketch showing procedure employing a local conputatlonal zone at the traillng edge o f  a circu- 
lation control airfoil. 
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Figure 2.- Overlay o f  s t rean l ines  from local zone ca l cu la t i on  onto those o f  ambient ca l cu la t i on  o f  re fe r -  
ence 9. 
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Figure 3.- Surface pressure coefficients on the trailing edge of the circulation control airfoil o f  refer- 
ence 8. a) Full field solution of reference 9. Baldwin-Lonax turbulence model plus curvature correc- 
tion. b) Local Navier-Stokes solution, Baldwin-Lomax turbulence model plus curvature correction. 
c) Local Navier-Stokes solution, Baldwin-Lomax turbulence model. no curvature correction. d) Local 
Navier-Stokes solution, Jones-Launder turbulence model. no curvature correction. 
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Figure 4.- Grid used for full airfoil/test section 
computation. 
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Figure 5.- Grid detail near jet exit; h/c = 0.002. 
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Figure 6.- Grid detail over entire trailing edge. 
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Figure 7.- Stream function of flow field in test 
section with circulation control airfoil. Baldwin- 
Lolax turbulence model: C, = 0.03. 
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FIgure 8.- Stream function and vector field near 
leading edge of circulation control airfoil. 
Baldwin-LoMx turbulence model; C, = 0.03. 
a) Stream functlon. b) Vector field. 
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Figure 9.- Stream function and vector f i e l d  near 
t r a i l i n g  edge of c irculat ion control a i r f o i l .  
Baldwln-Lonax turbulence nodel; C, = 0.03. 
a) Stream function. b) Vector f ie ld .  
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Figure 10.- Sectional l i f t  coefficient as function 
of j e t  maentun coefficient. Angle of attack - 0. 
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Figure 11.- Stream function corresponding to different turbulence models In the trailing edge region of 
the circulation control airfoil: C = 0.03. a) Baldwin-Lomax turbulence model. b) Baldwin-Loinax turbu- 
lence model plus jet history. c) baldwin-Lomax turbulence model plus curvature correction. d) Baldwin- 
Lomax turbulence model plus jet history and curvature correction. 
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Figure 12.- Stream function and vector f ie ld  In the trailing-edge region of circulation control airfoil;  
C, = 0.03. 
model. 
Jones-Launder turbulence model plus curvature correction. 

a) Stream function. Jones-Launder turbulence model. b) Vector f ield,  Jones-Launder turbulence 
c) Stream function, Jones-Launder turbulence nodel plus curvature correction. d )  Vector f ie ld ,  
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Figure 13.- Comparison of test  section stream functions corresponding to two j e t  mass momentum coeffi- 
cients. a) C, = 0.03. b) C, = 0.10. 
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Figure 14.- Comparison o f  computed and measured streamlines in the trailing-edge region. 
C, = 0.03. 

a) Cmputed, 
b) Computed. C, - 0.10. c) Experimental, C, = 0.03. d) Experimental, C, = 0.10. 
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Figure 15.- Pressure c o e f f i c i e n t  d i s t r i b u t i o n  o f  the  upper and lower surfaces o f  the a i r f o i l .  
Lomax turbulence model p lus  curvature correct ion,  w i t h  Jet  momentum c o e f f i c i e n t  matched t o  the experi- 
mental value. b) Baldwin-Lomax turbulence model p lus  Jet  h is to ry ,  w i t h  t o t a l  l i f t  matched t o  the experi- 
mental value. c )  Jones-Launder turbulence model, w i t h  t o t a l  l i f t  matched t o  the experimental value. 
d) Jones-Launder turbulence model corrected f o r  curvature, w i t h  Jet  momentum c o e f f i c i e n t  matched t o  the 
experimental value. 

a) Baldwin- 
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Figure 16.- Comparison of computed and measured pressure coefficients on the upper and lower wind tunnel 
walls for the Jones-Launder model with ltft matched to the expertnental value. 
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